Closing Fri: HW_4A, 4B, 4C $(6.4,6.5)$

6.4 Work (continued)

Entry Task:
A cable with density $4 \mathrm{lbs} / \mathrm{ft}$ is being used to lift a 50 pound weight from the ground to the top of a 25 foot building.
Find the total work done.

Step 1: Draw a picture.
Step 2: Break up the problem:
(a) Find the work to lift the 50 lbs weight.
(b) Find the work to lift the cable.

Step 3: Add these together.

Example:
You are pumping water out of an aquarium. The aquarium is a rectangular box with a base of 2 ft by 3 ft and height of 10 ft .
The density of water is $62.5 \mathrm{lbs} / \mathrm{ft}^{3}$. If the tank starts full, how much work is done in pumping all the water to the top and out over the side?

Quick Summary:

$$
\begin{aligned}
\text { Work } & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(F O R C E)(D I S T) \\
& =\int_{a}^{b}(F O R C E)(D I S T)
\end{aligned}
$$

Problem type 1: (Leaky bucket/spring)
FORCE $=f\left(x_{i}\right), \quad$ DISTANCE $=\Delta x$,
Problem type 2: (Chain/pumping)
FORCE $=$ weight of each horizontal slice
DISTANCE = distance moved by a slice
For a chain, we have
k = density $=$ force per distance
FORCE $=$ weight of slice $=k \Delta x$
DISTANCE $=$ distance moved by slice
For pumping, we have
$k=$ weight per volume
FORCE $=k$ (area of horiz. slice) Δy
DISTANCE = distance moved by slice

Some unit facts:

	Metric	Standard
Mass	kg	
Accel.	$9.8 \mathrm{~m} / \mathrm{s}^{2}$	$32 \mathrm{ft} / \mathrm{s}^{2}$
Force	Newtons $\mathrm{N}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$	pounds $=\mathrm{lbs}$
Dist.	$\mathrm{m}=\mathrm{meters}$	$\mathrm{ft}=$ feet
Work	Joules $\mathrm{J}=\mathrm{N} \cdot \mathrm{m}$	foot-pounds $\mathrm{ft} \cdot \mathrm{lbs}$

$\mathrm{g}=$ grams, in = inches, $\mathrm{yd}=$ yards, $\mathrm{mi}=$ miles
$1000 \mathrm{~g}=1 \mathrm{~kg}$
$100 \mathrm{~cm}=1$ meter
12 inches = 1 foot
3 feet = 1 yard
$5280 \mathrm{ft}=1$ mile
Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}=9800 \mathrm{~N} / \mathrm{m}^{3}$

$$
=62.5 \mathrm{lbs} / \mathrm{ft}^{3}
$$

Review: Particular scenarios

Type 1 Problems:

$$
\text { FORCE }=f\left(x_{i}\right), \text { DISTANCE }=\Delta x
$$

1. HW 4A/1, 2, 8, 9 and HW 4C/1

Given force, just need to integrate!

$$
\text { Work }=\int_{a}^{b} f(x) d x
$$

2. HW 4A/3, 4 (Springs)
(i) Covert all to meters
(ii) Label natural length, L, and note that L corresponds to $x=0$.

$$
\begin{aligned}
& \text { Force }=\mathrm{f}(\mathrm{x})=\mathrm{kx} \\
& \text { Work }=\int_{a}^{b} k x d x
\end{aligned}
$$

Step 1: Find k
Step 2: Answer question.

Type 2 Problems:
FORCE = weight of a horizontal slice, DISTANCE = distance to top
3. HW 4A/5 and HW 4C/2 (Chain)
(i) $\mathrm{k}=$ density of chain = weight/dist
(ii) FORCE at a subdivision $=k \Delta x$
(iii) Label DIST to top.

$$
\text { Work }=\int_{a}^{b} \text { Dist } \cdot k d x
$$

4. HW 4A/6,7 and HW 4C/3 (Pumping)

Water density $=9800 \mathrm{~N} / \mathrm{m}^{3}=62.5 \mathrm{lbs} / \mathrm{ft}^{3}$
(i) Label (put in xy-plane)
(ii) Draw a horizontal slice and find a formula for its area.
(iii) FORCE $=($ Density $)($ Area $) \Delta y$
(iv) DIST = distance to top

Work $=\int_{a}^{b}($ Dist $)($ Density $)($ Area $) \mathrm{dy}$

Example:

Consider the tank show at right.
The height is 3 meters, the width at the top is 2 meters and the length is 6 meters. Also we are pumping the water up to 4 meters above the ground (1 meter above the top edge).
If it starts full, how much work is done to pump it all out?

6.5 Average Value

The average value of the n numbers:

$$
y_{1}, y_{2}, y_{3}, \ldots, y_{n}
$$

is given by
$\frac{y_{1}+y_{2}+y_{3}+\cdots+y_{n}}{n}=y_{1} \frac{1}{n}+\cdots+y_{n} \frac{1}{n}$.
Goal: We want the average value of all the y-values of some function $y=f(x)$ over an interval $x=a$ to $x=b$.

Derivation:

1. Break into n equal subdivisions

$$
\Delta x=\frac{b-a}{n}, \text { which means } \frac{\Delta x}{b-a}=\frac{1}{n}
$$

2. Compute y-value at each tick mark

$$
y_{1}=f\left(x_{1}\right), y_{2}=f\left(x_{2}\right), \ldots, y_{n}=f\left(x_{n}\right)
$$

3. Ave $\approx f\left(x_{1}\right) \frac{\Delta x}{b-a}+\cdots+f\left(x_{n}\right) \frac{\Delta x}{b-a}$

$$
\text { Average } \approx \frac{1}{b-a} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

4. Thus, we can define

$$
\text { Average }=\frac{1}{b-a} \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

5. Which means the exact average y value of $y=f(x)$ over $x=a$ to $x=b$ is

$$
f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

